Partially Ordered Sets

Let X be a finite set.

Definition 1. R is called a "relation" on the set X, if $R \subseteq X \times X$ where $X \times X=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \in X\right\}$. Denote the Cartesion product if $(x, y) \in R$, then $x R y$.

Definition 2. A partially ordered set (poset for short) is an ordered pair (X, R), where X is a finite set and R is a relation on X such that the following holds:
(1) R is reflective: $x R y$ for $\forall x \in X$
(2) R is antisymmetric: if $x R y$ and $y R x$, then $x=y$
(3) R is transitive: if $x R y$ and $y R z$, then $x R z$

Examples. Consider the poset $\left(2^{[n]}, \subseteq\right)$, where " \subseteq " denotes the inclusion relationship.

We often use " \preccurlyeq " to replace the use of " R ". So $(X, R) \Rightarrow(X, \preccurlyeq)$.
If $x \preccurlyeq y$ but $x \neq y$, then $x \prec y$, and we say x is predecessor of y.

Definition 3. Let (X, \preccurlyeq) be a poset, we say element x is an immediate predecessor of y, if

$$
\text { (1) } x \prec y
$$

(2) NO $t \in X$ s.t. $x \prec t \prec y$

If x sa an immediate predecessor of y, then we write $x \triangleleft y$.
Fact: For $x, y \in(X, \preccurlyeq), x \prec y$ if and only if there exists $x_{1}, x_{2}, \ldots, x_{k} \in X$ s.t. $x \triangleleft x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{k} \triangleleft y$ (Note that $k=0$ i.e. $x \triangleleft y$).

Proof. (\Leftarrow) trivial
(\Rightarrow) For $x \prec y$, let $M_{x y}=\{t \in X: x \prec t \prec y\}$. We prove by induction on $\left|M_{x y}\right|$. Because $\left|M_{x y}\right|=0 \Rightarrow x \triangleleft y$. So suppose it holds for $x \prec y$ with $\left|M_{x y}\right|<n$. Consider $x \prec y$ with $\left|M_{x y}\right|=n \geqslant 1$. Pick any $t \in$ $M_{x y}$, consider $M_{x t}, M_{t y}$. Clearly $M_{x t} \subsetneq M_{x y}$ and $M_{t y} \subsetneq M_{x y}$ (Because of transitivity). By induction on $M_{x t}, M_{t y}$, there exists $x_{1}, x_{2}, \ldots, x_{k} \in X$ and $y_{1}, y_{2}, \ldots, y_{l} \in X$ s.t. $x \triangleleft x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{k} \triangleleft t$ and $t \triangleleft y_{1} \triangleleft y_{2} \triangleleft \ldots \triangleleft y_{l} \triangleleft y$, $\Rightarrow x \triangleleft x_{1} \triangleleft x_{2} \triangleleft x_{k} \triangleleft t \triangleleft y_{1} \triangleleft \ldots \triangleleft y_{l} \triangleleft y$. We are done.

One property that posets have is that we can express them in diagrams
Definition 4. The Hassa diagrams of a poset (X, \preccurlyeq) is a drawning in the plane such that
(1) Each element of X is drawn as a nod in the plane
(2) Each pair x, y with $x \triangleleft y$ is connected by a line segment
(3) If $x \triangleleft y$, then the nod x must appear lower in the plane then the nod y

The fact that $x \prec y$ iff $x \triangleleft x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{k} \triangleleft y$ now can be restated as follows: $x \prec y$ if and only if we can find a path in the Hassa diagram from nod x to nod y, strictly from bottom to top.

Definition 5. Let (X, \preccurlyeq) and $\left(X^{\prime}, \preccurlyeq^{\prime}\right)$ be two posets. A mapping $f: X \rightarrow$ X^{\prime} is called an embedding of (X, \preccurlyeq) and ($X^{\prime}, \preccurlyeq^{\prime}$) if
(1) f is injective
(2) $f(x) \preccurlyeq f(y)$ iff $x \preccurlyeq y$.

Theorem 6. For every poset (X, \preccurlyeq) there exists an embedding into the poset $\mathscr{B}_{X}=\left(2^{X}, \subseteq\right)$

Proof. Consider the mapping $f: X \rightarrow 2^{X}$ by $f(x)=\{y \in X: y \preccurlyeq x\}$. Let us verify that such f is an embedding of (X, \preccurlyeq) into \mathscr{B}_{X}.

Firstly, f is injective
Suppose $f(x)=f(y)$ for $x, y \in X \Rightarrow x \in f(y) \Rightarrow x \preccurlyeq y$, similarly $y \preccurlyeq x$.
Thus $x=y$.
Secondly, $f(x) \subseteq f(y)$ iff $x \preccurlyeq y$.
If $x \preccurlyeq y$, then $\forall t \in f(x)$ has $t \preccurlyeq x \preccurlyeq y \Rightarrow t \in f(y) \Rightarrow f(x)=f(y)$.
If $f(x) \subseteq f(y)$, then $x \subseteq f(x) \subseteq f(y) \Rightarrow x \preccurlyeq y$

Definition 7. Let $P=(X, \preccurlyeq)$ be a poset.
(1) For distinct $x, y \Rightarrow X$, if $x \prec y$ or $y \prec x$, then we say x, y are comparable. Otherwise x, y are incomparable
(2) The set $A \subseteq X$ is an antichain of P, if any two elements of A are incomparable. Let $\alpha(P)$ be the maximum size of an antichain in P
(3) The set $A \subset X$ is a chain of P, if any two elements of A are comparable. Let $\omega(P)$ be the maximum size of a chain of P

Consider the Hassa diagram, $\omega(P)$ means the max length of a path (from bottom to top) in this diagram. So $\omega(P)$ is also called the height of P. And $\alpha(P)$ is called the width of P.

Definition 8. An element $x \in X$ is minimal in $P=(X, \preccurlyeq)$, if x has NO predecessor in P.

Fact: The set of minimal elements of $P=(X, \preccurlyeq)$ forms an antichain of P.

Theorem 9. For \forall poset $P=(X, \preccurlyeq), \alpha(P) \cdot \omega(P)=|X|$

Proof. We will inductively define a sequence of poset P_{i} and set M_{i} for $1 \leqslant$ $i \leqslant l$ s.t. M_{i} is the set of minimal elements of $P_{i}=\left(X_{i}, \preccurlyeq\right)$ and $X_{i}=$ $X-\bigcup_{j=1}^{i-1} M_{j}$ as following. First, set $P_{1}=P=(X, \preccurlyeq), X_{1}=X$ and $M_{1}=\varnothing$. Assume posets $P_{i}=\left(X_{i}, \preccurlyeq\right)$ and M_{i-1} are defined for all $1 \leqslant i \leqslant k$. Let $M_{i}=\left\{\right.$ all minimal elements of $\left.P_{i}\right\}$ and let $X_{i+1}=X-M_{1} \cup \ldots \bigcup M_{i}$. Then let P_{i+1} be the subposet of P restricted on X_{i+1}. We keep doing this until $X_{l+1}=\varnothing$. By Fact 2 , each M_{i} for $1 \leqslant i \leqslant l$ is an antichain of P_{i} and thus it is also an antichain of P. So $\left|M_{i}\right| \leqslant \alpha(P)$

